Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomedicines ; 10(3)2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753434

ABSTRACT

The emergence of SARS-CoV-2 and its related disease caused by coronavirus (COVID-19) has posed a huge threat to the global population, with millions of deaths and the creation of enormous social and healthcare pressure. Several studies have shown that besides respiratory illness, other organs may be damaged as well, including the heart, kidneys, and brain. Current evidence reports a high frequency of neurological manifestations in COVID-19, with significant prognostic implications. Importantly, emerging literature is showing that the virus may spread to the central nervous system through neuronal routes, hitting the brainstem and cardiorespiratory centers, potentially exacerbating the respiratory illness. In this systematic review, we searched public databases for all available evidence and discuss current clinical and pre-clinical data on the relationship between the lung and brain during COVID-19. Acknowledging the involvement of these primordial brain areas in the pathogenesis of the disease may fuel research on the topic and allow the development of new therapeutic strategies.

2.
J Neurol ; 268(12): 4486-4491, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1231904

ABSTRACT

INTRODUCTION: SARS-CoV-2 might spread through the nervous system, reaching respiratory centers in the brainstem. Because we recently reported neurophysiological brainstem reflex abnormalities in COVID-19 patients, we here neuropathologically assessed structural brainstem damage in two COVID-19 patients. MATERIALS AND METHODS: We assessed neuropathological features in two patients who died of COVID-19 and in two COVID-19 negative patients as controls. Neuronal damage and corpora amylacea (CA) numbers /mm2 were histopathologically assessed. Other features studied were the immunohistochemical expression of the SARS-CoV-2 nucleoprotein (NP) and the Iba-1 antigen for glial activation. RESULTS: Autopsies showed normal gross brainstem anatomy. Histopathological examination demonstrated increased neuronal and CA damage in Covid-19 patients' medulla oblongata. Immunohistochemistry disclosed SARS-CoV-2 NP in brainstem neurons and glial cells, and in cranial nerves. Glial elements also exhibited a widespread increase in Iba-1 expression. Sars-Co-V2 was immunohistochemically detected in the vagus nerve fibers. DISCUSSION: Neuropathologic evidence showing SARS-CoV-2 in the brainstem and medullary damage in the area of respiratory centers strongly suggests that the pathophysiology of COVID-19-related respiratory failure includes a neurogenic component. Sars-Co-V2 detection in the vagus nerve, argues for viral trafficking between brainstem and lung.


Subject(s)
Brain Stem/virology , COVID-19 , Lung/virology , Nervous System Diseases , Humans , Nervous System Diseases/virology , SARS-CoV-2
3.
J Alzheimers Dis ; 79(3): 931-948, 2021.
Article in English | MEDLINE | ID: covidwho-1033235

ABSTRACT

Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.


Subject(s)
Brain Injuries/physiopathology , Neurodegenerative Diseases/physiopathology , Stroke/physiopathology , Tumor Necrosis Factor-alpha/physiology , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Brain/physiopathology , Brain Injuries/diagnosis , Brain Injuries/therapy , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/therapy , Disease Progression , Etanercept/therapeutic use , Heart Arrest/diagnosis , Heart Arrest/physiopathology , Heart Arrest/therapy , Humans , Locus Coeruleus/physiopathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/therapy , Norepinephrine/physiology , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Risk Factors , SARS-CoV-2 , Stroke/diagnosis , Stroke/therapy , Survivors , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL